SearchSearch
Navigacija
Navigacija

Projects

Macroautophagy (hereafter reffered to as autophagy) is a process of intracellular protein digestion in autophagolysosomes, allowing for removal of damaged proteins and preservation of energy and survival during metabolic stress, but also able to cause cell death when activated innapropriately. The main aim of the project is to establish the role of autophagy in therapy-induced death of cancer cells. The induction of autophagy and underlying molecular mechanisms will be investigated in cancer cell lines treated with various conventional (e.g. cisplatin, taxol, cytarabine, idarubicin) or experimental anticancer agents (e.g. metformin, statins, indomethacin, nanoparticles).

Macroautophagy (hereafter reffered to as autophagy) is a process of intracellular protein digestion in autophagolysosomes, allowing for removal of damaged proteins and preservation of energy and survival during metabolic stress, but also able to cause cell death when activated innapropriately. The main aim of the project is to establish the role of autophagy in therapy-induced death of cancer cells. The induction of autophagy and underlying molecular mechanisms will be investigated in cancer cell lines treated with various conventional (e.g. cisplatin, taxol, cytarabine, idarubicin) or experimental anticancer agents (e.g. metformin, statins, indomethacin, nanoparticles).

Industrial and technological progress increases the incidence of magnetic fields of different characteristics in our working and living environment. The subproject "Neurophysiological and behavioral responses of different species to external magnetic fields" (led by Dr. Branka Petković) deals with the effects of magnetic fields, particularly on the neuroendocrine system, in insects (Drosophila sp., Musca domestica, Tenebrio molitor, Baculum extradentatum, Morimus funereus,...), snail (Helix pomatia) and mammals (Rattus sp., Meriones unguiculatus). Electrophysiological studies in vitro and in vivo, histological and biochemical analyses (oxidative stress parameters, nucleotide content, gases turnover, enzyme and receptor activities), monitoring of development and behavior in selected model systems are planned. Obtained results reveal the mechanisms of magnetoreception in evolutionary distant species and whether magnetic field-induced response is unique or species-specific.

Industrial and technological progress increases the incidence of magnetic fields of different characteristics in our working and living environment. The subproject "Neurophysiological and behavioral responses of different species to external magnetic fields" (led by Dr. Branka Petković) deals with the effects of magnetic fields, particularly on the neuroendocrine system, in insects (Drosophila sp., Musca domestica, Tenebrio molitor, Baculum extradentatum, Morimus funereus,...), snail (Helix pomatia) and mammals (Rattus sp., Meriones unguiculatus). Electrophysiological studies in vitro and in vivo, histological and biochemical analyses (oxidative stress parameters, nucleotide content, gases turnover, enzyme and receptor activities), monitoring of development and behavior in selected model systems are planned. Obtained results reveal the mechanisms of magnetoreception in evolutionary distant species and whether magnetic field-induced response is unique or species-specific.

Cookie notice

IBISS uses analytical cookies to analyze the use of the site in order to improve the user experience, by clicking "Accept" you consent to the use of cookies.